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1. INTRODUCTION

Procedures for the seasonal adjustment of economic time
series have typically been evaluated by studying their effect
on a sample of actual time series. Recent proposals for
amendments and extensions to existing methods have also
been evaluated in the same way. Perhaps this approach is
thought to be inevitable given that ‘‘there seems to be no
ideal process of evaluating a method of adjustment”
(Granger 1978, p. 55). In contrast, however, this paper con-
tinues a line of research in which the properties of the pro-
cedures themselves are studied, in the abstract. It is hoped
that this will improve our general understanding of the per-
formance of the existing methods and their extensions, and
help to explain the results of the previous empirical studies.

The particular procedure considered is the Bureau of the
Census Method II, Variant X—11 (Shiskin et al. 1967),
which is widely used and is generally held to give satisfac-
tory results in the seasonal adjustment of historical data.
Our analysis proceeds by linear filter methods. The basic
framework of a set of ‘‘time-varying’’ linear filters is
presented by Wallis (1982), and further properties of these
filters and their components are considered in this paper.
The use of linear methods implies that attention is restricted
to the performance of X—11 in additive mode (in which sea-
sonal components are estimated as average differences from,
not average ratios to, the trend-cycle), neglecting the optlon
of graduating extreme irregular values.

The problem of first adjusting the current month’s obser—
vation and then revising the seasonally adjusted figure as
time goes by and more data become available has received
much attention recently. A specific suggestion is that the
subsequent revisions in the adjusted values might be reduced
by applying X—11 not to the observed series alone, but to a
series augmented by forecasts of future values. This has
been put forward in association with various forecasting
methods (compare Dagum 1975, 1979; Geweke 1978;
Kenny and Durbin 1982); but since in all these methods the
forecasts are calculated as linear combinations of observed
values, our analysis can also encompass these X—11 FORE-
CAST procedures. Many - statistical agencies run the X—11
program only once a year, and at that time, project seasonal
factors for the adjustment of the next 12 months’ data to be
used as the data become available. Kenny and Durbin
(1982) and Wallis (1982) have argued that this practice

should be replaced by running the program every month,
and it is not considered in this paper.

The linear filter representation of the X—11 seasonal
adjustment procedure is presented in section 2. The filters
range from the purely one-sided moving average implicit in
the preliminary adjustment of the most recent observation,
through a number of asymmetric moving averages, to the
symmetric moving average implicit in the adjustment of his-
torical data. The relations with forecast-augmented pro-
cedures are considered in section 3, and following a result
given by Geweke (1978) and Pierce (1980), we define the -
property of internal consistency of a set of linear filters. The
polynomial regression origips of smoothing filters are con-
sidered in section 4, and’it is shown that whereas sets of
filters constructed in this way are internally consistent, the
Henderson moving averages used in X—11, for which a
new interpretation is given, are not. In section 5, forecast-
augmented procedures are used to provide models for which
the X—11 procedure already minimizes the mean squared
error of revisions, thus illuminating the empirical compari-
son of various methods. Particular attention is paid to
important work by Kenny and Durbin (1982) and Dagum
(1975, 1979). The relation to optimal signal extraction
methods is briefly considered in section 6.

2. THE X—11 LINEAR FILTERS

The original observable monthly series, denoted by x,, is
the input to a linear filtering operation, of which the output
is denoted by y,. In the present context y is the seasonally
adjusted value of x, but the basic framework can be applied
to any problem of signal extraction, interpolation, extrapola-
tion, and smoothing by linear filter methods. The X—11
program comprises a sequence of moving average or linear
filter operations, but their net effect can be represented by a
single set of moving averages. For a date sufficiently far in
the past, the final or historical adjusted value y,™ is
obtained by application of the symmetric filter a,,(L)
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where L is the lag operator and a,,; = @, —;. This filter is

described variously as a 2m + 1-term moving average or as

a symmetric filter of half-length m. For current and recent

data, this filter cannot be applied, and truncated asymmetric
filters are employed: _

m
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For the filter ¢;(L), { =0, 1, .. ., m, the subscript i indi-
cates the number of ‘“future’’ values of x entering the mov-
ing average, that is, the number of negative powers of L
that appear, or the negative of the lower limit of summation
in the expression 2 a;;x,—;. Equivalently, the superscript
on y indicates that y,") is the adjusted value of x, calculated
from observations at times t —m, t —m + 1, ..., ¢
.., t +1i, and 3,9 is the first-announced or preliminary
seasonally adjusted figure. For the X—11 filters considered
here, the value of m is 84. (It is assumed that at the stage at
which the program chooses a 9-, 13-, or 23-term Henderson
moving average to estimate the trend-cycle, the 13-term
average is chosen.) Thus the X-11 program can- be
represented as a set of 85 linear filters with, respectively, 0,
1, ..., 84 coefficients of future values. There is no
attempt to compensate for the truncation of the weights
applied to future data by increasing the number of past
values entering the moving average; thus, with few excep-
tions, all filters involve 84 past values, as indicated by the
constant upper limit of summation in the above equation,
although the remote weights are very small. In figures 1, 2,
and 3, the weights and transfer functions of three filters of
particular interest, ao(L), aiL), and ag(l), are repro-
duced from Wallis (1982), where details of their calculation
can be found; the symmetric filter is also given in Wallis
(1974).

At times ¢ .+ 7 and t + k, two seasonally adjusted values
¥ and y,® can be calculated, corresponding to the unad-
justed value x,, and the revision is defined as

r0 =30 —y®0<i <k <m

This reflects the information in the ‘‘new’” data x, ..,
Xe+i+2 5 - -« s Xe+k. The total revision from a given point
in time ¢ + i is ,*™. Often statistical agencies run sea-
sonal adjustment programs only once a year, so that the
revisions then made are r,% ™12 The first annual revisions
%12 are of particular interest below.

3. FORECAST-AUGMENTED PROCEDURES AND
THE INTERNAL CONSISTENCY OF SETS OF
LINEAR FILTERS

In the X—11 FORECAST procedures, current data are
adjusted not by the one-sided filter ao(L) but by later filters
applied to a series extended by forecasts. In practice, 12

SECTION 1

such forecasts are used; thus, the procedures calculate the
preliminary adjusted value not as ag(L)x, but as a (L)%,
where the tilde (") indicates that the input to the filter is the
augmented series Xy, . . ., X;, X 41, . . ., K412, Since the
forecasts are calculated as linear combinations of observed
values, the result is still a one-sided filter of the original
data. Writing the forecasts as
[4
Sk = fuxioy k=1, ..., 12

j=0
the new one-sided moving average is

1
dolL)x, = é Ay, X+ i a12,j% —j
=1 =

max(m, £)

]

i
(ap,; + ﬁ a1y, 1 fi Ve
i =1

Dagum (1975, 1979) bases the forecasts on ARIMA models
fitted to the observed series, while Kenny and Durbin
(1982) use autoregressive models fitted by stepwise regres-
sion methods to the first differences of the series.
- Support for X—11 FORECAST procedures is provided by
a result given by Geweke (1978) and Pierce (1980), namely
that the asymmetric filter for which the total revision has
smallest mean square is given by the application of the sym-
metric filter a,,(L) to a series extended to the extent neces-
sary by optimal linear forecasts. Similarly the one-sided
filter for which the first annual revision 7, ? has smallest
mean square is do(L) above, provided that the forecasts
X4 are optimal. (Many of the empirical evaluations com-
pare the total revisions of various procedures, even though
only 12 forecasts are employed in the X—11 FORECAST
procedures; we return to this below.) In Geweke’s words,
“‘the best linear forecast of any given linear combination of
x,’s is the given linear combination of the forecasted x,’s.”’
Given a symmetric moving average, these resuits provide
a way of constructing asymmetric moving averages for the
adjustment of recent data, based on optimal forecasting
equations for a given x-process. We say that a set of linear
filters constructed in this way is internally consistent, with
respect to the given x-process. Likewise, a given set of
linear filters can be examined for its internal consistency by
asking what forecast function and, hence, what x-process is

~ implied if a;(L) is equivalent to the application of a,,(L) to

a series extended by m — i forecasts, and is this x-process
the same for all possible pairs. By considering two inter-
mediate adjusted values y,) and y,®, 0 < i < k < m,
and repeatedly applying Geweke and Pierce’s result, in
effect repeatedly taking conditional expectations, we see
that an internally consistent set of filters minimizes revisions
throughout the whole sequence of adjustments. Thus, if the
filters @;(L) and a;(L) minimize the mean square of the
revisions r,*™ and r,®*m) respectively, being identical to
the application of a,,(L) to a sequence of observations aug-
mented by m — i and m — k forecasts, respectively, ‘then
@;(L) also minimizes the mean square of the revisions r,&*),
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and is identical to the application of ai(L) to a series
extended by k — i forecasts. Note that while the theoretical
result refers to an optimal forecast given the infinite past,
the practical filters involve a finite past; hence, some re-
striction on the x-processes considered is necessary in order
for the equivalences among filters to hold exactly. Finite-
order autoregressive models clearly allow correspondences
among the practical filters, but moving average models
whose infinite autoregressive representations do not con-
verge quickly allow only an approximation to an optimal
forecast equivalence. :

As an illustration, we examine the 5-term Henderson
moving averages used for estimation of the trend-cycle com-
ponent in the quarterly version of the X—11 program (Shis-
kin et al. 1967, app. B, table 3A):

aoL)x, = 0.670x, + 0.403x,; — 0.073x;
a(L)x, = 0.25Tx,4 + 0.522¢, + 0.294x,_; — 0.073x,

an(L)x, = —0.073% 4, + 0.294x,; + 0.558x,
+ 0.294x,_; — 0.073x,

SECTION 1

We seek the x-process and associated forecast coefficients
implied by the assumption that the one-sided filter ag(L )x;
is identical to a,(L)%,, that is, the symmetric filter applied
to the forecast-augmented series X, o, X -1, X1, f+1, fr+2:
For an exact equivalence, the forecasts can only involve
three observed x-values, so we postulate a third-order
autoregressive process, with forecasts given by

X = b, T box, -1+ daxi g,
fg = G T b + v
= (b + bx, + b1y + )iy + bidax 2

Equating the coefficients of, respectively, x;, X;-1 and x;
in agL)x, and ax(L)%, then gives three polynomial equa-
tions for the ¢’s, which have four solutions. Writing them
in the form &) = 1 — &1L — sl — d3L3, these are

(1 — 0.568L — 0.432L?%)
(1 — 3.027L — 1.493L?
(1 — 4.459L + 3.459L2)
(1 — 4.027L + 2.534L% + 1.493L%)

Note that this mathematical problem has multiple solutions
even when one is attempting to recover an autoregressive
operator that has actually been used to construct the one-

sided filter from the symmetric filter. One hopes, in general,

that (at least) one of these solutions has a plausible statisti-

cal interpretation. To consider this it is more informative to -
express &(L) in terms of its roots L) =1 QA —NL),

whereupon the solutions can be written

(1 — L)1 + 0.432L)

(1 + 04320)(1 — 3.459L)

(1 — L)1 — 3.459L)

(1 = L)1 + 0.432L)(1 — 3.459L)

Of these, the first is acceptable as an ARIMA (1,1,0)
model, but the remainder are not acceptable from a
statistical point of view due to the presence of the explosive
root. Thus, we conclude that ag(L) is equivalent to the
application of ay(L) to a sequence of observations aug-
mented by optimal forecasts for series obeying the first
model, that is, for such a series ao(L) minimizes the mean
square of the revisions r,®?.

The problem of nonlinearity does not arise when compar-
ing ag(l) with a(L), or a(L) with ax(L), since only one
forecast is involved, whose coefficients are (linear in) the
$’s. Simple calculation gives the model relating ag(L) to
a(L) as

(1 —L)Y1 +0424L)x, = €
and the model relating a (L) to ax(L) as
(1 — L)1 +0493L)x, = ¢
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Although the three models are very similar, their coefficient
values do not exactly coincide, and we conclude that these
filters are not internally consistent in this sense.

4. INTERMNAL CONSISTENCY OF REGRESSION-
BASED FILTERS

4.1 Least squares polynomial regression

Filters used to estimate the trend-cycle component prior to
estimation of the seasonal component are usually designed
to reproduce, locally, a polynomial of prescribed degree d.
A least squares estimate of the trend value then emerges as
a linear function of the data, whose coefficients are indepen-
dent of time, and these are the moving average coefficients.
(See, for example, Kendall 1973, ch. 3.) Given a sample of
n observations xi, .. ., X, placed in a column vector x,
and an n X (d + 1) matrix Z whose jih column comprises
the (j — )™ powers of the integers 1, . . ., n, the trend
estimate at time 7 is

y, = 2/ (&' Ty Z'x

where z', = (1, £, % ..., 1%y, Writing the coefficients

of the observations in a colurnn vector a, with the coeffi-
cients of the earliest data entering first, then

v =a'% a=ZLD

The coefficients are independent of time in the sense that,
on indexing the data 1o + 1, 1y +2, ..., tp +n and
using these integers to construct Z and z, conformably, the
same coefficients are obtained whatever the value of 7. So
when n = 2m + 1, it is conventicnal to let the time index
run from —m to m for arithmetical convenience. (Similarly,
the use of orthogonal polynomials simplifies the arithmetic
without affecting the results.) If » is odd and ¢ is the mid-
point of the sample, then a symmetric moving average is
obtained. Kendall (1973, app. A) presents Cowden’s tabula-
tions of moving averages for trend estimation at 1 = 0, 1,

., n, n + 1, for given values of n and 4. Such a table
does not correspond to a set of filters in the sense of section
2, but such a set is easily constructed by putting 1 = m + 1

and this set is internally cousistent with respect to the
regression model.

To see this, copsider the filter applicable to
n < 2m + 1 data points and that applicable to kK < n
(but £ > d) data points. For internal consistency, the latter
must be equivalent to the application of the former to the
series xq ..., Xx, £x+1, . . ., %y, where the forecasts are
now obtained by potynemial regression. We partition the
vector X and matrix Z into their first k and last (n — k)
rows, thus

¥ o= (xy L ong), B (@ I

The forecasts &, obtained from polynomial regression based
2 52

on the data x; are
% = Loyl VLix,

and applying the n-term moving average to the series
%' = (x; - %) gives the trend estimate at time ¢ as

il

7, (LT 7%

ey ) —lr - 'r ! ~lry!
e zt(Z]ZI -+ ZQZQ) (A.'JIXI 4+ ZZL’Z(ZIZI) lel)
2,(2,2y) 7T 1%

Yt

which is identical to the application of the corresponding k-
term filter to the data x;.

4.2 The Henderson moving averages

These filters are designed to reproduce a cubic polyno-
mial trend. In obtaining a general expression for the weights
of the symmetric filter, Henderson (1916) showed that three
alternative smoothing criteria lead to the same result:

(1) minimization of the variance of the third differences
of the output series,

(ii) minimization of the sum of squares of the third
differences of the moving average coefficients,

(i) fitting a cubic by weighted least squares, with the
sum of squares of third differences of the weights a
minimum.

A more accessible presentation of the general derivation and
a demonstration of the equivalence of these criteria is in the
appendix of Kenny and Durbin (1982). A further interpreta-
tion can be obtained using the approach of Hannan (1970,
pp. 186-7), as follows.

Augmenting the moving average coefficient vector a with
zeros to accommodate the differencing operations, criterion
(i), the sum of squares of the third differences of these
coefficients, can be wriiten

S =a'Va

where V is a symmetric band matrix with elements on the
main diagonal and first three sub-diagonals equal to 20,
—15, 6, and —1, respectively, all other elements being zero.
Hannan shows that minimization of this general expression
subject to the condition that the filter reproduces an arbitrary
polynomial of degrec d yields the solution

y, =a'x =z EZVETZVIx

In Hannan’s formulation, V is the covariance matrix of the
input series, and he notes that, as is well known, this result
corresponds to using the best linear unbiased regression of
the input series on the polynomials i estimate the trend
value at the relevant time point. In this case, the particular
matrix ¥ is the covariance matrix of the moving average
process

w = (1 ~ L)Sﬁr
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and so we have a further interpretation of the Henderson
filters, namely as generalized least squares polynomial
regression subject to this error structure. If # is odd and ¢ is
the midpoint of the sample, then the coefficients are again
symmetric, and using this approach, we can readily verify
their published values.

By setting + = m + 1 and considering in turn n =
m+1,m +2,...,ad2m + 1, the above expression
gives a set of fifters of the kind discussed earlier. This set is
again internally consistent with respect to the present regres-
sion model. The proof of this is a tedious generalization of
the proof for the least squares case given in section 4.1, tak-
ing account of the need to define X+, . . ., X, as the best
linear unbiased predictors of x; 4y, . . ., X, givenxy, . . .,
Xk -

On computing sets of filters for m = 4, 6, and 11 in this
way, we immediately notice that, except for the symmetric
filter, the coefficients differ from those used in X—11. The
source of the asymmetric moving averages given by Shiskin
et al. (1967, app. B, tables 3B-3D) corresponding to the
symmetric 9-, 13-, and 23-term Henderson moving averages
is something of a mystery: They are not due to Henderson
(1916), no alternative source is cited, and they are not the
result of applying Henderson’s criteria to the design of
asymmetric filters. Our calculations in general find that the
weights given to current data are somewhat larger than those
in the tabulated filters used in X-—11. Kenny and Durbin
(1982) report that the ‘‘one-sided version is constructed
essentially by assuming that the series to be smoothed can
be extended by a straight line fitted by least squares,”
which is their own empirical finding for the monthly filters.
For the quarterly 5-term filters analysed in section 3, we do
not claim that the autoregressive models we have deduced
were actually used to construct the asymmetric filters, but
we note that the models imply that the forecast is approxi-
mately given as the average of the last two observed values,
which may be. a more plausible interpretation of the actual
derivation. Basing asymmetric filters on forecasts obtained
from a différent model than that embodied in the symmetric
filter leads to internal inconsistency. In turn, this leads one
to expect that improvements over the existing one-sided sea-
sonal adjustment filters could be made for series well-
described by the model underlying the symmetric filter and,
hence, satisfactorily adjusted by it.

5. FORECASTING INTERPRETATIONS OF THE
RELATIONS BETWEEN SELECTED FILTERS

5.1 Autoregressive models relating ay(L) to a (L)

The filters under consideration require a finite amount of
past data, and in section 3 the possibility was suggested of
finding an autoregressive model and associated forecast
functions such that an existing filter g;(L) is already
equivalent to the application of g, (L) to a series augmented
by k — i forecasts. For such a model, the mean square of
the revision r,@¥) is already at a minimum. Much research

SECTION 1

has focussed on the adjustment of current data, and the
practical X—11 FORECAST procedures augment the
observed series with 12 forecasts, and so first we consider
the relation between the X—11 filters a(L ) and a (L ).

To obtain a general characterization, we follow the
approach of Kenny and Durbin (1982), in which forecasts
are obtained from autoregressive models. They estimate
these by regressing the first difference Ax, on Ax;—y, . . .,
Ax, s, reducing the set of regressors by the Efroymson
stepwise method. Neglecting the restriction implied by the
use of the first difference operator, the general model is

dL)x =€
where (L) is of degree 26. For this model we construct the
forecast coefficients for 1-step, 2-step, ..., 12-step
forecasts
25
S = 2, fyXis k=1, ..., 12

j=0

by starting with the expression for the one-step forecast

Fpp =0 tbox g + -t ks

and then using, sequentially, the expression for the k-step
forecast

+ b1t 11

+ bogXi k-6 k=2, ..., 12

Bk =G5 T 0

+¢kxl+

We then seck the &’s that equate the one-sided filter
implied by the application of aL) to the forecast-
augmented series, namely

25 1 ) .
dolL) = E {al?.,j + é fkjal2,'kJ U+ i ap;L!
=1

j=0 j=26

to ag(l). Note that the use of a finite autoregression implies
that the later coefficients in the new filter are simply those
of a;xL), and so the new filter cannot be exactly equated
to ao(L). (Comparing the coefficients of ag(L) and a (L)
plotted in figure 1, we see that there is little difference in
the coefficients at lags greater than 25 except at lag 36.)
Equating the earlier coefficients in the two filters gives

1
ag; =ap; t é Sfrjar, —« j =01 ...,25
k=1

a set of 26 mnonlinear equations in the 26 unknown &’s
which we solve by numerical methods. (A nonlinear least
squares algorithm is used: at a solution the residual sum of
squares is zero.) As in the simple example of section 3,
there are muitiple solutions to this numerical problem, and
while we cannot claim to have examined them all, indeed
we are pot sure how many there are, the model given below
has the most plausible statistical interpretation and is also
suggested by the models relating successive pairs of filters.
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i b; i b;
1 —.60 14 27
2 —.40 15 14
3 =26 16 -.15
4 A3 17 15
5 -=.19 18 -.20
6 38 19 23
7 -.16 20 -—.16
8 .29 21 15
9 -.13 22 —.08
10 12 23 -.09
11 11 24 -.39
12 —-28 25 59
13 =21 26 .01

To interpret this general autogression, we calculate the roots
of the autoregressive operator, ¢(L) = II(1 — \;L). There
are 2 real roots, (1 + 0.982L) and (1 + 0.018L), and 12
complex conjugate pairs, whose modulus and argument (in
radians) are as follows:

mod arg mod  arg
1.033 0.10 0981 0.27
0958 0.51 0945 0.82
0983 1.06 0965 137
0985 1.57 0975 1.89
0982 2.10 0978 242
0985 = 2.62 0988 2.8l

Noting that the arguments in the first block of six pairs of
roots are approximately knw/6, k =0, 1, ..., 5, these
together with the first real root can be approximated as
(1 —L) (1 — L"), the differencing operator commonly
employed in ARIMA models for seasonal time series.
While this solution contains a complex conjugate pair of
roots with modulus greater than one, it is one of the least
explosive solutions to this problem we have found, and no
solution representing a stationary autoregression has been
observed. In empirical time series analysis, the use of as
many as 26 coefficients to specify a model would be
thought excessive, and likewise the relations between the
filters may be more readily interpreted in terms of seasonal
ARIMA models parameterized more parsimoniously, as con-
sidered in section 5.2.

The implication of this result is that, for a series with
such autoregressive structure, the existing one-sided X—11
filter ag(L) minimizes the mean square of the first annual
revision 7,12, and no X—11 FORECAST procedure of this
kind will lead to an improvement. Of course for series hav-
ing substantially different autoregressive structures, the
appropriate X—11 FORECAST procedure will outperform
X—11. Attention is then drawn to Kenny and Durbin’s
anomalous finding that for one group of nine series (those
with MCD = 1) the X—11 ag(L) gives better results than
the X—11 FORECAST dy(L). If this finding is not due to
sampling variation, then three possible explanations are
suggested.

9

The first possibility, on which we have little further to
say, is that the various nonlinearities in the practical pro-
cedures vitiate our linear analysis. The second is that the
comparison is based as in other studies (e.g., Kuiper 1978),
on the total revision 7,9 of the two methods and not the
first annual revision r,% 2. The one-sided filter that mini-
mizes the mean square of »*™ is a,,(L) applied to a series
augmented by m forecasts; call this ag(L). On the other
hand, the filter being considered is d(L), namely a (L)
applied to a series augmented by 12 forecasts. If the filters
were internally consistent, then a (L) would be equivalent
to the application of a,(L) to a series augmented by
m — 12 forecasts and ao(L) could be obtained either by
applying this a5(L) to a series augmented by 12 forecasts
or as a*y(L ). However, our earlier results suggest and later
results confirm that the X—11 filters are not internally con-
sistent, and we have the possibility that for these series the
X—11 a¢(L) is a better approximation to ag(L) than is
do(L), hence the result.

A third explanation involves the possible nonoptimality of
the autoregressive forecast, which might apply if the
appropriate models for the series had important moving
average components. However, the form of the seasonal
ARIMA models identified by Kenny and Durbin for these
series is little different in this respect from those for the
series for which X—11 FORECAST methods dominate, and
without knowing the coefficient values, this possibility can-
not be assessed. Using the conventional Box-Jenkins nota-
tion (p, d, q) X (P, D, Q);, the nine series giving the
anomalous results have p + d + D = 3, and this distin-
guishes them from the other series. Five of the nine models .
are (0, 2, 1) X (0, 1, 1 )3, and the remaining four also
have P = 0 and Q = 1. Leaving aside questions about the
existence of measures such as MCD for models of this kind
(Burridge 1982) and despite the fact that if MCD=1, the
X~—11 program applies the 9-term Henderson moving aver-
age to estimate the trend-cycle component, not the 13-term
average used in our linear filter calculations, the results sug-
gest that such models might emerge when we consider
equivalences between filters based on ARIMA models.

5.2 ARIMA models relating ao(L), ao(L) and agy(L)

In this section, we report the results of a comparable
exercise to that of the previous section, except that seasonal
ARIMA models replace the finite autoregressive model.
That is, for a given seasonal ARIMA model, we construct
the forecast coefficients and, hence, the X—11 FORECAST
filter coefficients

1
doj = ap,; + i fyai2, - J=01 ..., m
k=1

and then seek the model and its associated parameter values
such that @o(L) is as close as possible to ag(L ). For a given
model, the parameter values are chosen to minimize the
unweighted sum of squared deviations between the filter
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coefficients. The choice among candidate models is partly
based on the sum of squares, but we also have in mind the
various criteria used to interpret such models when they are
fitted to observed time series. For comparative purposes, we
include in the search the three models available in the
automatic version of Statistics Canada X—11 ARIMA
(Dagum 1979),. and it turns out that one of these is our pre-
ferred model. The results for these three models are shown
below. The final column can be compared to the ‘‘zero-
forecast” sum of squares

3 (@0, — an,)? = 0.0477
j=0

We note that the autoregressive operator in the preferred
model has a root close to unity, but setting it equal to unity
worsens the fit, and we retain the (2, 1, 2) X (0, 1, D,
model for further comparisons below, where this feature is
less pronounced.

Again the interpretation is that for a series obeying the
model (2, 1, 2) X (0, 1, 1)y, with the above parameter
values, the existing X—11 filter a¢(L) is a close approxima-
tion to the X—11 ARIMA filter that minimizes the mean
square of the first annual revision %12 In empirical com-
parisons of the two methods, the advantage of X—11
ARIMA will increase as the x-process differs more exten-
sively from that given above. In practice, we note that sub-
stantial variation can be observed as parameter values
change within a given model.

To consider filters that -minimize the mean square of the
total revision r,®™), we repeat this exercise for the filter

Estimated model relating a(L) to a (L)

v(1 ~ 1.37L + 039LH)(1 — L)1 — L?) x,
(1 =LY — Lx,
(1 =LYl ~LPx

i

Estimated model relating a(L) to a,,(L)

(1 —1.23L +035LH(1 — L)1 — L?) x,
(I =Ly — LPx,
(1 -L)a ~L?x

o

6. OPTIMAL SIGNAL EXTRACTION

The problem of seasonal adjustment is formulated as a
problem of optimal signal extraction by Grether and Nerlove
(1970) and solved using methods presented by Whittle
(1963). It is assumed that the observed series x, is the sum
of two unobserved uncorrelated stationary components, s,
and u,, respectively the seasonal and nonseasonal com-

SECTION 1

ag(L) obtained by applying the symmetric filter a,,(L) to a
series augmented by m forecasts:

mn
* .
aO,]'=amj+Efkjamk, j =01 ..., m
k=1

The preferred model is again (2, 1, 2) X (0, 1, 1)1», and the
resuits for the three Dagum models are shown below.

m ,
D, (ag; — am)* = 0.0696
j=0

Results in earlier sections cast doubt on the internal con-
sistency of the X~—11 filters, and while the models relating
these three filters are not identical, the form of the preferred
model is the same in each case, and the coefficients are
remarkably similar. To complete the picture, we report the
coefficient values for the (2, 1, 2) X (0, 1, 1);; model that
best approximates a15(L) by the application of a,(L) to a
series augmented by m — 12 forecasts:

(1 — 1.08L + 0.21L%)(1 — L)1 — L™)x,
= (1 — 1.42L + 0.70L?
(1 — 0.60L )¢,
Once more these values are similar, suggesting that what-
ever adjusted values empirical comparisons are based on,
$©, %32 or y,™, then for series well-described by this

model, X—11 will produce approximately the same results
as X—11 FORECAST methods.

Sum of squared

deviations
(1 ~ 1.49L + 0.76L2)(1 — 0.69L %), 0.0096
(1. — 1.32L + 0.63LA)(1 — 0.74L %), 0.0111
(1 — 0.25L)(1 — 0.69L )¢, 0.0188

Sum of squared

- deviations
(1 — 145L + 0.73L%)(1 — 0.62L ), 0.0114
(1 — 1.33L + 0.58L%(1 — 0.65L e, 0.0124
(1 = 0.21L)(1 — 0.66L P, 0.0218

ponents. Assuming that the stochastic structure of s, and u
and hence that of x;, is known Whittle gives expressions fc
5,%), the minimum mean squared error estimate of s, give
data {x,;7 = t + k}. These expressions are linear filters «
the data, in general, of semi-infinite extent; the case k = ¢
gives a symmetric filter. Extensions of these results

models in which the components follow nonstationa
ARIMA schemes are given by Cleveland and Tiao (197
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(see also Pierce, 1979), who present a components model
for which the X—11 symmetric filter a,,(L) approximates
the optimal signal extraction filter. The relations between
the filters considered in the previous section are examined in
the light of such models by Burridge and Wallis (1982).

The practical difficulty in implementing seasonal adjust-
ment methods based on optimal signal extraction results is
that of identifying models for the components from the
observed series, given that different components models can
lead to the same overall model. Burman ( 1980) makes some
practical proposals in this respect, and implements a sea-
sonal adjustment method based on the resulting decomposi-
tion. We are not yet able to incorporate this approach into
our comparisons, but anticipate that for series well-described
by the models for which the X—11 filters approximate
optimal signal extraction filters, little benefit from the new
methods will be found in empirical comparisons.
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COMMENTS ON “MODELS FOR X—11 AND X—-11 FORECAST PROCEDURES
FOR PRELIMINARY AND REVISED SEASONAL ADJUSTMENTS” BY
KENNETH F. WALLIS

- John Geweke
University of Wisconsin-Madison

The revision problem in the seasonal adjustment of time
series has long been familiar to those responsible for the
production of seasonally adjusted series, and somewhat
more recently has drawn the attention of academics as well.
Analytical treatment of the problem has centered on the fact
that if seasonal adjustment procedures constitute the applica-
tion of a linear filter, then the mean square error of revision
will be minimized if the filter is applied to the available
data augmented by optimal linear forecasts of the unavail-
able data. Exploitation of this fact to reduce actual revisions
in published seasonally adjusted time series is made difficult
by the need to parameterize time series and then estimate
the parameters before forecasts can be produced, to say
nothing of the political and bureaucratic problems involved
in the routine application of procedures which require sub-
jective judgments by highly trained practitioners.

In this paper, Kenneth Wallis has provided models which
can be used to study further the degree to which official
procedures conform to the ‘‘forecasting paradigm.”” Atten-
tion is focused on Census X—11, which (at least in very
similar variants) is the basis for most seasonal adjustment
throughout the world. Census X—11 does not explicitly fore-
cast unavailable data, but uses special filters near the begin-
nings and ends of series when the number of data points
required is not available. Wallis compares these filters and
asks whether they can be interpreted as the application of
the historical Census X—11 filter to the series augmented by
linear forecasts. The filters are said to be internally con-
sistent if there exists a linear forecast such that the applica-

tion of historical Census X~11 to the augmented series

results in the set of filters employed. If the forecast turns
out to be the best linear forecast of a given series, then the
set of filters is optimally internally consistent with respect to
the series. I found this method of analysis very useful. It
provides a quick answer to the internal consistency question,
and allows us to organize some of the empirical results that
have appeared in recent years. In what follows, I shall first
elaborate on the paper’s finding that Census X—11 is inter-
nally inconsistent, and then indicate how the method of
analysis developed here might be further employed to make
sense of empirical results. '

Before turning to the analysis, I shall present some evi-

dence in support of a stylized fact which has been obscured -

by the method of presentation in many empirical papers
(including Kenny and Durbin 1981, the most recent and
accessible of the papers cited by Wallis): The magnitude of
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the revision of seasonally adjusted data is much more a
function of the series in question than it is of the method
used to cope with the revision problem. In table 1, Census
X—11 is compared with ‘‘optimal’’ procedures, with fore-
casts made in four alternative ways: Using a canonical fac-
torization of the estimated spectral density (X—11S), a 3-
year autoregression (X—11A), an ARIMA model (0, 1, 1) X

(, 1, 1) (X—11 ARIMA (1)), and an ARIMA model (0, 2,

2) X (0,1, 1) (X—11 ARIMA (2)). The variation in revi-
sions across series is much greater than the variation in revi-
sions across methods (including Census X—11), and differ-
ences among the four alternative procedures are small com-
pared with the difference between them and Census X—11.

The analytical work in Wallis’s paper shows that Census
X—11 is internally inconsistent. In view of the fact that the
filters used near the beginnings and ends of series were not
constructed in any optimal way—at least to the best of
anyone’s recollection—this is not surprising. It is interesting
to evaluate the implications of the discrepancy for mean
square revision. To keep matters simple, consider the five-
term Henderson moving average cited as illustration in the
paper. It is shown that the forecasting model implicit in the
filters for this average is of the form

A.X, = bAXt_.l + €,

However, the value of b implicit depends on which filters
are being compared; there are three filters involved, and the
pair-wise comparisons yield the values of —.432, —.424,
and —.493 for b. The five-term Henderson moving average
may be written

—0.073Ax, 45 + 221Ax%, 4y +.779%, + .294x, _; — .073x,
The revision between time ¢ and time ¢ + 2 is

—0.073Ax, 45 + 221Ax%,4) + (07362 — 221b)Ax,

John Geweke is Associate Professor in the Department
of Economics, 1180 Observatory Drive, University of
Wisconsin, Madison, Wis., 53706. National Science
Foundation gramt SES8005606 provided partial finan-
cial support.
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If the process were
Ax, = cAx,_ + ¢

then the mean square revision would be

MSR(b,c) = (.073b% — 221b).073b% — 221b + .442¢
_ .146¢%) — .032266¢ + .054170

Suppose that in fact ¢ = —.432. If b = —432, MSR =
05620708. If b = —.424, then MSR = .05621222, an
increase of .0046 percent in root mean square revision; and
if b = —.493, it is 0.5651684, an increase of .2752 percent.
This seems to suggest that the internal inconsistency of
Census X—11—at least in the five-term Henderson moving
average—is not a practical problem.

This finding is driven by the fact that, locally, there is no
return to optimal forecasting because

dMSR(D,c Y ab l,_. =0 1

Given a change in ¢, it makes po difference (locally!)
whether the old forecasting method is used*or the newer
optimal one is employed:

dMSR(b,c Y ac |-, = dMSR(c,c )/ de )
= —021316¢3 + .096798¢2 ~ .097682¢ — .0322166

Since this expression is generally nonzero, variation in c
may well lead to a reduction in MSR even when the fore-
casting procedure is not modified. This kind of result is sug-
gested by (1), but (2) seems strong; whether the latter result
holds more generally warrants investigation.

This analysis suggests that there ought not to be much
variation in the revision of seasonally adjusted series for dif-
ferent sensible forecasting procedures, but that substantial
variation will arise across different series for the same pro-
cedure. For nonsensical forecasting procedures, this need
not be the case, and the analogue of this fact in the context
of the analytical examples employed here is shown in table
1: Globally, & and ¢ are about equally important in explain-
ing variation in MSR. This analysis further appears to model
well the results reported in table 2.

TABLE 1. EVALUATION OF MSR (b,c)

b
c —-0.8 -0.4 0. 0.4 0.8
—0.8 0.030 0.045 0.080 0.120 0.155
-0.4 .072 057 .067 088 110
0. 104 .064 054 .060 071
0.4 126 067 .041 .035 .038
0.8 136 064 .028 014 011

These considerations lead to a fourth explanation (beyond
the three suggested by Wallis) for the Kenny-Durbin (1981)
finding that for a particular group of series, the conventional
Census X—11 program produces smaller revisions on aver-
age than do various forecasting procedures. The series in
question were those with the lowest months of cyclical dom-
inance (MCD), i.e., those with the shortest span over which
average absolute changes in the trend component exceed
absolute changes in the irregular component. For smoother
series, a fixed process which extrapolates trend values will
predict better than it will for more erratic series. For such
series we may interpret Census X—11 as providing a sensi-
ble set of forecasts. Since the X—11 forecasting weights
have no variance (unlike the weights in procedures requiring
estimation), it seems plausible that mean square revision in
X—11 could well be smaller than that in procedures with
more flexible forecasting capabilities. This interpretation is
supported by Kenny and Durbin’s finding that the latter pro-
cedures compare. increasingly favorably with conventional
Census X—11 as the MCD of the series increase.

REFERENCES

GEWEKE, JOHN (1978), ““The Revision of Seasonally
Adjusted Time Series,”” Proceedings of the Business and
Economic Section, American Statistical Association.
320-325.

(1980), ‘““An Evaluation and Comparison of
X—11, X—118, X—11A, and X—11 ARIMA,” University

. of Wisconsin memorandum.

KENNY, P. B., and DURBIN, I. (1981), ‘‘Local Trend
Estimation and Seasonal Adjustment of Economic and
Social Time Series,” Journal of the Royal Statistical
Society A, forthcoming.

TABLE 2. ROOT MEAN SQUARE PROPORTIONAL REVISION OF RELATIVE CHANGES

Series X—11 X-1S X-118 X—11 ARIMA(1) X—11 ARIMA(2)
1 1.96 - 1.35 (31.1%) 1.35 (31.1%) 1.32 (32.6%) 1.33 (32.1%)
2 96 70 (27.1%) 73 (24.0%) 74 (22.9%) 75 (21.9%)
3 85 67 (21.1%) 67 (21.1%) 67 (21.1%) 68 (20.0%)
4 14.01 10.17 (27.4%) 10.30 (26.5%) 10.43 (25.6%) 11.01 (21.4%)
5 10.34 7.62 (26.3%) 7.61 (26.4%) 6.99 (32.4%) 6.98 (32.5%)
6 4.55 3.11 (31.6%) 2.99 (34.3%) 3.88 (14.7%) 3.80 (16.5%)

Source: Geweke (1980). These series are (1) general merchandise retail sales; (2) motor vehicles and automotive equipment inventories; (3) invent.on'es of
groceries and related products; (4) one-family housing starts, northeast; (5) motor vehicle assembly operations; (6) sales by blast furnaces and steel mills. For
details on computations, see Geweke (1978). Figures in parenthesis indicate improvement over X—11.



COMMENTS ON “MODELS FOR X—11 AND X~11 FORECAST PROCEDURES
FOR PRELIMINARY AND REVISED SEASONATL ADJUSTMENTS” BY
KENNETH F. WALLIS

- Adi Raveh

Kenneth Wallis studies procedures for seasonal adjustment
of economic time series in the abstract, rather than trying to
evaluate their effects on sample time seres, as is usually
done. This interesting and constructive paper continues his
time-varying linear filter method (Wallis 1974, 1981). In an
ingenious and concise presentation the author provides tools
to check whether linear filters are internally consistent.
Among other findings, it is shown that sets of filters con-
structed by polynomial regression are internally consistent and
that X—11 filters (for additive model) are not. Practically,
X—11 filters do not deviate terribly from being internally
consistent.

Comparisons between X—11 and X—11 FORECAST for
various approximations to models are given in the paper as
well. For series well-described by X—11 ARIMA based on
the (2, 1, 2) (0, 1, 1), model with specific parameter values,
empirical comparisons suggested that X—11 will produce
approximately the same results as X—11 .FORECAST
methods. Hence, Wallis’ paper contributes a lot to our general
understanding of the performance of X—11 and X—11
FORECAST.

The problem of revision of the seasonal adjustment of
empirical time series may be decomposed into mainly two
parts: (a) revision due to structure of the data, namely the
specific series in question and (b) revision due to the method
used to deal with the problem. This paper focused on the latter
part as is required by its title. On the other hand, it seems that
most of the magnitude of the revision is essentially a function
of the first part as already mentioned by Geweke (1980).

Consider an ideal series which has fixed seasonality and no
irregularity. Then the periodicity-free series known as season-
ally adjusted data need not be revised at all. The variation in
revisions across methods for such series, as well as series that
have an irregular component and moving seasonality superim-
posed gradually, can also be a plausible basis for comparison
purposes. '

The use of the linear filter methods implies that attention is
restricted to the additive model and neglects the option of
graduating extreme irregular values. Most of the empirical
time series which are analyzed by X—11 (90 percent or more)
or other decomposition methods are analyzed using multipli-
cative models. Thus, from the application point of view,
perhaps efforts should be devoted to improving our general
understanding of the multiplicative model and the mixed
multiplicative-additive mode!l in further research (Raveh

14

1981). Young (1968, p. 45¢) indicated that. ““The effect of
the nonlinear operations is not very large and for some pur-
poses can be ignored.”’” Nevertheless, it is worthwhile to
assess more precisely the revisions obtained by nonlinear
operations. Wallis’ paper has obviously made great progess
in studying some theoretical properties of X—11. However,
further research has to pay attention to the option of graduat-
ing extreme values which are often used as well as the non-
linear filters.

Another point which the paper did not take into considera-
tion is the constiaints for seasonal factors that are built into
X —11. These constraiats force the seasonal factors of a calen-
dar year to add up to zerc when applying the additive model
and add up to 12 (or 1200 percent) for the multiplicative ver-
sion. On account of these constraints, different shifts of the
series backward or forward yield different estimation results
for the main components: Trend, seasonal, and irregular. For
example, let a given series cover m whole years from January
through December. Then, shift the series 6 months ahead, or
in other words, January is called July, February is called
August, etc. Now the series includes (m — 1) whole years plus
2 half years. Apply X—11 to the shifted series as well as the
to the original one. It yields different results. For example, the
seasonal factors for January of the original series are not the
same as those for July of the shifted series. The above facts
indicate that different revisions are obtained for the same
series shifted backward or forward. In other words, the revi-
sion is affected by the location of the last observation within
the year.

Another question worth mentioning is whether it is neces-
sary to revise seasonal adjustments at all for series that have a
fixed or nearly fixed seasonal pattern. For such series it is
plausible, sometimes, to use the seasonal pattern which has
already been estimated to adjust current data. In order to be
able to discriminate between fixed and moving seasonality,
they have to be defined properly or as simply as possible.

To conclude my comments, [ would like to present a family
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of coefficients for measuring the amount of linear association
different from the classicial product-moment coefficient. This
family is based on ideas that quantify the magnitude of the
slopes of a given series over time. In some sense, X—11 uses
the measure proposed below for forecasting the seasonal fac-
tors 1 year ahead.

Aseries Xy, . . ., X, is perfectly linear if and only if
X X=X — X
foralli =3, ..., N 0]
or

A%, =AX; ~AX;_;, =0 i =3, ...N 2)

where AX; = X; — X;_,. On the other hand, for any three
adjacent observations A%X; can be either positive or negative.
The maximum of A’X; for any triple X;, X;—;, X, is
obtained when AX; = —AX; _; and its value is

A% = (AX; — (AX; ) = 24X,.

It easy to verify that the quantity

S a7

i=3

= 3)
2 [2A%; |?

i=2

varies between O and 1. Let us focus on one coefficient from a
family based on the above quantity, say when p = 2. This
measure is given as

0<c¢ =LIN® =LINX,, ..., X,) =
N
D (A%;)?
-5 =1-k <1 )
4> (AX,)?
=2

LIN(X) = ¢ = 1 (K = 0) if and only if the series is perfectly
linear. In other words, its slope remains constant over time.
LINX) = ¢ = 0 (K = 1) if and only if the slope of every two
consecutive observations changes its sign but its absolute
value remains the same. This means that in some sense a
series like (a, b, a, b, . . . , b) where a # b is the most dis-
similar to linear association. For both cases, when LINX) =
1 or 0, perfect prediction is obtained. LIN(X) = 0 if the series
is locally linear, namely, there are very few turning points
(relative to the length of the series) and in between the series
is linear.

Given sets of filters are said to be internally consistent if
there exists a linear forecast such that the application of the
decomposition (e.g., X—11) method to the augmented series
results in the set of filters employed. Let us suggest an
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approach for forecasting, which is in some sense the ‘other
way around’’ from what has been done in Wallis’ paper. To
be specific, we find forecasts for which the past and forecast
series are consistent, namely, the same in the short-term or at
least in the range of the required forecasting. The structures
can be measured by appropriate coefficients of goodness-of=
fit. The forecasted values are then the augmented series such
that the goodness-of-fit (or structure) would be the same as for
the original series.

Let us call the above principle the Persistent Structure Prin-
ciple. The *‘structure’” can be measured as linear or monotone
or any other function of time, depending on the researcher’s
loss function. The very simple case of predicting one unit
ahead based on linear trend is presented here. A more general
case of monotone trend will be given in Raveh (1982).

Let us demonstrate our approach by using the coefficient
¢ = Lin(X) given in (4) and based on the ‘“ideal’’ linear con-
ditions in (1). Our principle requires that the estimated fore-
cast X, to be such that LINX, X, +1) for the augmented
series would be equal to the LIN(X) of the original series.
Hence, by equating LIN (X, )f,, +1) = LIN(X), the required
X, +1 is found to be

X =aX, + (1 —a)X,_, ®)

where a can be either a; = ~2\/;(— = ora, = 2VK +2
YUovk -1 0T vk 1

and K is defined in (4).Thus, X,, ;| is 2 combination of the two
last observations. The weights a, 1 — a are functions of the
entire series.

For the case of perfect linear correlation, LIN(X) = 1 (or K
= 0) and a = 2, this yields the equation

Xps1 = 2X, — Xpo1 =X, + & — Xu-1)

In the other extreme case of perfect negative linear associa-
tion, LIN (X) = 0 (or K = 1) and a = 0. Thus,

A

Xn+i =Xy

The procedure in X—11 forecasts the seasonal factor for the
Jjth month 1 year ahead, with fixed weights in the following
way:

a

Sj,n+l = Sj,n + 1/2[S]n - Sj,n—]] e
158, =058, (6)

In light of the above approach X—11 adopts g, = 1.50rK =
0.25 or LINX) = 0.75. Thus, the forecasts of $,., are in
some sense based on rough approximations of linear relation-
ships between S, S, . . ., Sy.

Equation (6) is the formula used for prediction purposes
when the identified model is an ARIMA (1,1,0) as in (7):

(1 — 0B)AS, = g, ™
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where B is back shift operator and @, a white noise. The
parameter 8 in (7) is equivalent to —(1 — a) in (5). In other
words, in order to predict seasonal factors 1 year ahead,
X—11 uses an ARIMA (1,1,0) model with 6 = .5 (ora =
1.5) as a constant and not by means of an optimal parameter
estimation process. Recently, we found that for many
economic series from the Bureau of the Census data base the
optimal (in terms of the above Persistent Structure Principle)
coefficient a is very close to 1.5.

Needless to say, LIN(X) is based heavily on the last two
observations. For forecasting purposes we recommend the use
of more stable relations involving any four observations rather
than any consecutive three observations. Thus, for example,
stronger conditions for linearity are given in (8) below instead
of the conditions in (1) and (2).

Xi'“Xj_Xk—XE
i—j k—¢
andn=i>j=ladn=k>(=1 (8

SECTION 1
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